Org.apache.spark.sparkexception exception thrown in awaitresult

Org.apache.spark.sparkexception exception thrown in awaitresult

I'm new to Spark and I'm using Pyspark 2.3.1 to read in a csv file into a dataframe. I'm able to read in the file and print values in a Jupyter notebook running within an anaconda environment. This...Exception message: Exception thrown in awaitResult: .Retrying 1 more times. 2020-07-24 22:01:18,988 WARN [Thread-9] redshift.RedshiftWriter (RedshiftWriter.scala:retry$1(135)) - Sleeping 30000 milliseconds before proceeding to retry redshift copy 2020-07-24 22:01:45,785 INFO [spark-dynamic-executor-allocation] spark.ExecutorAllocationManager ...Nov 5, 2016 · A guess: your Spark master (on 10.20.30.50:7077) runs a different Spark version (perhaps 1.6?): your driver code uses Spark 2.0.1, which (I think) doesn't even use Akka, and the message on the master says something about failing to decode Akka protocol - can you check the version used on master? If you are trying to run your spark job on yarn client/cluster. Don't forget to remove master configuration from your code .master("local[n]"). For submitting spark job on yarn, you need to pass --master yarn --deploy-mode cluster/client. Having master set as local was giving repeated timeout exception.I run this command: display(df), but when I try to download the dataframe I obtain the following error: SparkException: Exception thrown in awaitResult: Caused by: java.io. Stack Overflow AboutI have a spark set up in AWS EMR. Spark version is 2.3.1. I have one master node and two worker nodes. I am using sparklyr to run xgboost model for a classification problem. My job ran for over six...org.apache.spark.SparkException: **Job aborted due to stage failure: Task 0 in stage 1.0 failed 1 times, most recent failure: Lost task 0.0 in stage 1.0 (TID 1 ...setting spark.driver.maxResultSize = 0 solved my problem in pyspark. I was using pyspark standalone on a single machine, and I believed it was okay to set unlimited size. – Thamme GowdaNov 10, 2016 · Hi! I run 2 to spark an option SPARK_MAJOR_VERSION=2 pyspark --master yarn --verbose spark starts, I run the SC and get an error, the field in the table exactly there. not the problem SPARK_MAJOR_VERSION=2 pyspark --master yarn --verbose SPARK_MAJOR_VERSION is set to 2, using Spark2 Python 2.7.12 ... Jan 14, 2023 · org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3) (10.139.64.6 executor 0): org.apache.spark.SparkException: Exception thrown in awaitResult: Go to the Executor 0 and check why it failed Add the dependencies on the /jars directory on your SPARK_HOME for each worker in the cluster and the driver (if you didn't do so). I used the second approach. During my docker image creation, I added the libs so when I start my cluster, all containers already have the libraries required.Jan 14, 2023 · org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3) (10.139.64.6 executor 0): org.apache.spark.SparkException: Exception thrown in awaitResult: Go to the Executor 0 and check why it failed Apr 8, 2019 · Create cluster with spark memory settings that change the ratio of memory to CPU: gcloud dataproc clusters create --properties spark:spark.executor.cores=1 for example will change each executor to only run one task at a time with the same amount of memory, whereas Dataproc normally runs 2 executors per machine and divides CPUs accordingly. On 4 ... public static <T> T awaitResult(scala.concurrent.Awaitable<T> awaitable, scala.concurrent.duration.Duration atMost) throws SparkException Preferred alternative to Await.result() . This method wraps and re-throws any exceptions thrown by the underlying Await call, ensuring that this thread's stack trace appears in logs.Here are some ideas to fix this error: Serializable the class. Declare the instance only within the lambda function passed in map. Make the NotSerializable object as a static and create it once per machine. Call rdd.forEachPartition and create the NotSerializable object in there like this: rdd.forEachPartition (iter -> { NotSerializable ... org.apache.spark.SparkException: Exception thrown in awaitResult Use the below points to fix this - Check the Spark version used in the project - especially if it involves a Cluster of nodes (Master , Slave). The Spark version which is running in the Slave nodes should be same as the Spark version dependency used in the Jar compilation.Jun 21, 2019 · You can do either of the below to solve this problem. set spark configuration spark.sql.files.ignoreMissingFiles to true. run fsck repair table tablename on your underlying delta table (run fsck repair table tablename DRY RUN first to see the files) Share. Improve this answer. Follow. answered Dec 22, 2022 at 15:16. 3. I am very new to Apache Spark and trying to run spark on my local machine. First I tried to start the master using the following command: ./sbin/start-master.sh. Which got successfully started. And then I tried to start the worker using. ./bin/spark-class org.apache.spark.deploy.worker.Worker spark://localhost:7077 -c 1 -m 512M.Mar 5, 2020 · I run this command: display(df), but when I try to download the dataframe I obtain the following error: SparkException: Exception thrown in awaitResult: Caused by: java.io. Stack Overflow About I am new to spark and have been trying to run my first java spark job through a standalone local master. Now my master is up and one worker gets registered as well, but when run below spark program I got org.apache.spark.SparkException: Exception thrown in awaitResult. My program should work as it runs fine when master is set to local. My Spark ...Nov 5, 2016 · A guess: your Spark master (on 10.20.30.50:7077) runs a different Spark version (perhaps 1.6?): your driver code uses Spark 2.0.1, which (I think) doesn't even use Akka, and the message on the master says something about failing to decode Akka protocol - can you check the version used on master? I am trying to run a pyspark program by using spark-submit: from pyspark import SparkConf, SparkContext from pyspark.sql import SQLContext from pyspark.sql.types import * from pyspark.sql importNov 9, 2021 · Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 43.0 failed 1 times, most recent failure: Lost task 0.0 in stage 43.0 (TID 97) (ip-10-172-188- 62.us-west-2.compute.internal executor driver): java.lang.OutOfMemoryError: Java heap space. org.apache.spark.sql.execution.joins.BroadcastHashJoin.doExecute(BroadcastHashJoin.scala:110) BroadcastHashJoin physical operator in Spark SQL uses a broadcast variable to distribute the smaller dataset to Spark executors (rather than shipping a copy of it with every task).Saved searches Use saved searches to filter your results more quicklyI am trying to find similarity between two texts by comparing them. For this, I can calculate the tf-idf values of both texts and get them as RDD correctly.org.apache.spark.SparkException: Exception thrown in awaitResult: at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205) at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:100) 6066 is an HTTP port but via Jobserver config it's making an RPC call to 6066. I am not sure if I have missed anything or is an issue.Feb 25, 2019 · Add the dependencies on the /jars directory on your SPARK_HOME for each worker in the cluster and the driver (if you didn't do so). I used the second approach. During my docker image creation, I added the libs so when I start my cluster, all containers already have the libraries required. I am new to spark and have been trying to run my first java spark job through a standalone local master. Now my master is up and one worker gets registered as well, but when run below spark program I got org.apache.spark.SparkException: Exception thrown in awaitResult. My program should work as it runs fine when master is set to local. My Spark ...Hi! I run 2 to spark an option SPARK_MAJOR_VERSION=2 pyspark --master yarn --verbose spark starts, I run the SC and get an error, the field in the table exactly there. not the problem SPARK_MAJOR_VERSION=2 pyspark --master yarn --verbose SPARK_MAJOR_VERSION is set to 2, using Spark2 Python 2.7.12 ...Oct 24, 2017 · If you are trying to run your spark job on yarn client/cluster. Don't forget to remove master configuration from your code .master("local[n]"). For submitting spark job on yarn, you need to pass --master yarn --deploy-mode cluster/client. Having master set as local was giving repeated timeout exception. I have a spark set up in AWS EMR. Spark version is 2.3.1. I have one master node and two worker nodes. I am using sparklyr to run xgboost model for a classification problem. My job ran for over six...I have a spark set up in AWS EMR. Spark version is 2.3.1. I have one master node and two worker nodes. I am using sparklyr to run xgboost model for a classification problem. My job ran for over six...Yes, this solved my problem. I was using spark-submit --deploy-mode cluster, but when I changed it to client, it worked fine. In my case, I was executing SQL scripts using a python code, so my code was not "spark dependent", but I am not sure what will be the implications of doing this when you want multiprocessing. –org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task 0.3 in stage 0.0 (TID 3) (10.139.64.6 executor 0): org.apache.spark.SparkException: Exception thrown in awaitResult: Go to the Executor 0 and check why it failedSpark SQL Java: Exception in thread "main" org.apache.spark.SparkException 2 Spark- Exception in thread java.lang.NoSuchMethodErrorSolution When the Spark engine runs applications and broadcast join is enabled, Spark Driver broadcasts the cache to the Spark executors running on data nodes in the Hadoop cluster. The 'autoBroadcastJoinThreshold' will help in the scenarios, when one small table and one big table is involved.它提供了低级别、轻量级、高保真度的2D渲染。. 该框架可以用于基于路径的绘图、变换、颜色管理、脱屏渲染,模板、渐变、遮蔽、图像数据管理、图像的创建、遮罩以及PDF文档的创建、显示和分析等。. 为了从感官上对这些概念做一个入门的认识,你可以运行 ...@Hugo Felix. Thank you for sharing the tutorial. I was able to replicate the issue and I found the issue to be with incompatible jars. I am using the following precise versions that I pass to spark-shell.In the traceback it says: Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in stage 43.0 failed 1 times, most recent failure: Lost task 0.0 in stage 43.0 (TID 97) (ip-10-172-188- 62.us-west-2.compute.internal executor driver): java.lang.OutOfMemoryError: Java heap spaceorg.apache.spark.SparkException: Exception thrown in awaitResult Use the below points to fix this - Check the Spark version used in the project - especially if it involves a Cluster of nodes (Master , Slave). The Spark version which is running in the Slave nodes should be same as the Spark version dependency used in the Jar compilation.Dec 11, 2017 · hello everyone I am working on PySpark Python and I have mentioned the code and getting some issue, I am wondering if someone knows about the following issue? windowSpec = Window.partitionBy( Jul 25, 2020 · Exception message: Exception thrown in awaitResult: .Retrying 1 more times. 2020-07-24 22:01:18,988 WARN [Thread-9] redshift.RedshiftWriter (RedshiftWriter.scala:retry$1(135)) - Sleeping 30000 milliseconds before proceeding to retry redshift copy 2020-07-24 22:01:45,785 INFO [spark-dynamic-executor-allocation] spark.ExecutorAllocationManager ... Feb 11, 2020 · Hi there, I reached out internally to the product team and this is an issue known to them. They have fixed the issue and the fix is being deployed. Spark and Java: Exception thrown in awaitResult Ask Question Asked 6 years, 10 months ago Modified 1 year, 2 months ago Viewed 64k times 16 I am trying to connect a Spark cluster running within a virtual machine with IP 10.20.30.50 and port 7077 from within a Java application and run the word count example:I have an app where after doing various processes in pyspark I have a smaller dataset which I need to convert to pandas before uploading to elasticsearch. I have res = result.select("*").toPandas() On my local when I use spark-submit --master "local[*]" app.py It works perfectly fine. I also ...Nov 9, 2022 · Saved searches Use saved searches to filter your results more quickly Hi I am facing a problem related to pyspark, I use df.show() it still give me a result but when I use some function like count(), groupby() v..v it show me error, I think the reason is that 'df' is...Hi! I am having the same problem here. Exception in thread "main" java.lang.reflect.UndeclaredThrowableException at org.apache.hadoop.security.UserGroupInformation ...Dec 28, 2017 · setting spark.driver.maxResultSize = 0 solved my problem in pyspark. I was using pyspark standalone on a single machine, and I believed it was okay to set unlimited size. – Thamme Gowda Jan 24, 2022 · We use databricks runtime 7.3 with scala 2.12 and spark 3.0.1. In our jobs we first DROP the Table and delete the associated delta files which are stored on an azure storage account like so: DROP TABLE IF EXISTS db.TableName dbutils.fs.rm(pathToTable, recurse=True) I am trying to run a pyspark program by using spark-submit: from pyspark import SparkConf, SparkContext from pyspark.sql import SQLContext from pyspark.sql.types import * from pyspark.sql import. Jul 26, 2022 · We are trying to implement master and slave in 2 different laptops using apache spark, however the worker is not connecting to the master, even though it is on the same network and the following er... Teams. Q&A for work. Connect and share knowledge within a single location that is structured and easy to search. Learn more about TeamsI have a spark set up in AWS EMR. Spark version is 2.3.1. I have one master node and two worker nodes. I am using sparklyr to run xgboost model for a classification problem. My job ran for over six...Thanks for contributing an answer to Stack Overflow! Please be sure to answer the question.Provide details and share your research! But avoid …. Asking for help, clarification, or responding to other answers.Dec 20, 2022 · Thanks for contributing an answer to Stack Overflow! Please be sure to answer the question.Provide details and share your research! But avoid …. Asking for help, clarification, or responding to other answers. Mar 5, 2020 · I run this command: display(df), but when I try to download the dataframe I obtain the following error: SparkException: Exception thrown in awaitResult: Caused by: java.io. Stack Overflow About install the spark chart. port-forward the master port. submit the app. Output of helm version: Write the 127.0.0.1 r-spark-master-svc into /etc/hosts. Execute kubectl port-forward --namespace default svc/r-spark-master-svc 7077:7077.Hi! I am having the same problem here. Exception in thread "main" java.lang.reflect.UndeclaredThrowableException at org.apache.hadoop.security.UserGroupInformation ...Create cluster with spark memory settings that change the ratio of memory to CPU: gcloud dataproc clusters create --properties spark:spark.executor.cores=1 for example will change each executor to only run one task at a time with the same amount of memory, whereas Dataproc normally runs 2 executors per machine and divides CPUs accordingly. On 4 ...I am new to spark and have been trying to run my first java spark job through a standalone local master. Now my master is up and one worker gets registered as well, but when run below spark program I got org.apache.spark.SparkException: Exception thrown in awaitResult. My program should work as it runs fine when master is set to local. My Spark ...Yes, this solved my problem. I was using spark-submit --deploy-mode cluster, but when I changed it to client, it worked fine. In my case, I was executing SQL scripts using a python code, so my code was not "spark dependent", but I am not sure what will be the implications of doing this when you want multiprocessing. –Oct 27, 2022 · I am trying to find similarity between two texts by comparing them. For this, I can calculate the tf-idf values of both texts and get them as RDD correctly. Stack Overflow Public questions & answers; Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers; Talent Build your employer brandNov 28, 2017 · I am new to spark and have been trying to run my first java spark job through a standalone local master. Now my master is up and one worker gets registered as well, but when run below spark program I got org.apache.spark.SparkException: Exception thrown in awaitResult. My program should work as it runs fine when master is set to local. My Spark ... I have an app where after doing various processes in pyspark I have a smaller dataset which I need to convert to pandas before uploading to elasticsearch. I have res = result.select("*").toPandas() On my local when I use spark-submit --master "local[*]" app.py It works perfectly fine. I also ...Hi! I am having the same problem here. Exception in thread "main" java.lang.reflect.UndeclaredThrowableException at org.apache.hadoop.security.UserGroupInformation ...Oct 24, 2017 · If you are trying to run your spark job on yarn client/cluster. Don't forget to remove master configuration from your code .master("local[n]"). For submitting spark job on yarn, you need to pass --master yarn --deploy-mode cluster/client. Having master set as local was giving repeated timeout exception. An Azure service that provides an enterprise-wide hyper-scale repository for big data analytic workloads and is integrated with Azure Blob Storage.Spark报错处理. 1、 问题: org.apache.spark.SparkException: Exception thrown in awaitResult 分析:出现这个情况的原因是spark启动的时候设置的是hostname启动的,导致访问的时候DNS不能解析主机名导致。Converting a dataframe to Panda data frame using toPandas() fails. Spark 3.0.0 Running in stand-alone mode using docker containers based on jupyter docker stack here: ... Yarn throws the following exception in cluster mode when the application is really small:Dec 11, 2017 · hello everyone I am working on PySpark Python and I have mentioned the code and getting some issue, I am wondering if someone knows about the following issue? windowSpec = Window.partitionBy( Spark SQL Java: Exception in thread "main" org.apache.spark.SparkException 2 Spark- Exception in thread java.lang.NoSuchMethodErrorCurrently I'm doing PySpark and working on DataFrame. I've created a DataFrame: from pyspark.sql import * import pandas as pd spark = SparkSession.builder.appName(&quot;DataFarme&quot;).getOrCreate...Here are some ideas to fix this error: Serializable the class. Declare the instance only within the lambda function passed in map. Make the NotSerializable object as a static and create it once per machine. Call rdd.forEachPartition and create the NotSerializable object in there like this: rdd.forEachPartition (iter -> { NotSerializable ...Jul 28, 2016 · I am running SPARK locally (I am not using Mesos), and when running a join such as d3=join(d1,d2) and d5=(d3, d4) am getting the following exception "org.apache.spark.SparkException: Exception thrown in awaitResult”. Googling for it, I found the following two related links: 它提供了低级别、轻量级、高保真度的2D渲染。. 该框架可以用于基于路径的绘图、变换、颜色管理、脱屏渲染,模板、渐变、遮蔽、图像数据管理、图像的创建、遮罩以及PDF文档的创建、显示和分析等。. 为了从感官上对这些概念做一个入门的认识,你可以运行 ...Hi! I am having the same problem here. Exception in thread "main" java.lang.reflect.UndeclaredThrowableException at org.apache.hadoop.security.UserGroupInformation ...Hi there, Just wanted to check - was the above suggestion helpful to you? If yes, please consider upvoting and/or marking it as answer. This would help other community members reading this thread.org.apache.spark.SparkException: Exception thrown in awaitResult: at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205) at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:100) 6066 is an HTTP port but via Jobserver config it's making an RPC call to 6066. I am not sure if I have missed anything or is an issue.Mar 20, 2023 · Caused by: org.apache.spark.SparkException: Exception thrown in awaitResult: at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:226) at org.apache.spark.sql.execution.exchange.BroadcastExchangeExec.doExecuteBroadcast(BroadcastExchangeExec.scala:146) at org.apache.spark.sql.execution.InputAdapter.doExecuteBroadcast ... Hi! I am having the same problem here. Exception in thread "main" java.lang.reflect.UndeclaredThrowableException at org.apache.hadoop.security.UserGroupInformation ...An Azure analytics service that brings together data integration, enterprise data warehousing, and big data analytics. Previously known as Azure SQL Data Warehouse.Spark报错处理. 1、 问题: org.apache.spark.SparkException: Exception thrown in awaitResult. 分析:出现这个情况的原因是spark启动的时候设置的是hostname启动的,导致访问的时候DNS不能解析主机名导致。 问题解决: 2. Caused by: org.apache.spark.SparkException: Exception thrown in awaitResult: The default spark.sql.broadcastTimeout is 300 Timeout in seconds for the broadcast wait time in broadcast joins. To overcome this problem increase the timeout time as per required example--conf "spark.sql.broadcastTimeout= 1200" 3. “org.apache.spark.rpc ...Converting a dataframe to Panda data frame using toPandas() fails. Spark 3.0.0 Running in stand-alone mode using docker containers based on jupyter docker stack here: ... I want to create an empty dataframe out of an existing spark dataframe. I use pyarrow support (enabled in spark conf). When I try to create an empty dataframe out of an empty RDD and the same schem...org.apache.spark.SparkException: Exception thrown in awaitResult: at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:205) at org.apache.spark.rpc.RpcEnv.setupEndpointRefByURI(RpcEnv.scala:100) 6066 is an HTTP port but via Jobserver config it's making an RPC call to 6066. I am not sure if I have missed anything or is an issue.Jul 28, 2016 · I am running SPARK locally (I am not using Mesos), and when running a join such as d3=join(d1,d2) and d5=(d3, d4) am getting the following exception "org.apache.spark.SparkException: Exception thrown in awaitResult”. Googling for it, I found the following two related links: Oct 27, 2022 · I am trying to find similarity between two texts by comparing them. For this, I can calculate the tf-idf values of both texts and get them as RDD correctly. Here is a method to parallelize serial JDBC reads across multiple spark workers... you can use this as a guide to customize it to your source data ... basically the main prerequisite is to have some kind of unique key to split on.Caused by: org.apache.spark.SparkException: Exception thrown in awaitResult: Caused by: org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 in ...I have 2 data frames one with 10K rows and 10,000 columns and another with 4M rows with 50 columns. I joined this and trying to find mean of merged data set, I have a spark set up in AWS EMR. Spark version is 2.3.1. I have one master node and two worker nodes. I am using sparklyr to run xgboost model for a classification problem. My job ran for over six...Nov 3, 2021 · Check the YARN application logs for more details. 21/11/03 15:52:35 ERROR YarnClientSchedulerBackend: Diagnostics message: Uncaught exception: org.apache.spark.SparkException: Exception thrown in awaitResult: at org.apache.spark.util.ThreadUtils$.awaitResult(ThreadUtils.scala:226) at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala ... The cluster version Im using is the latest: 3.3.1\Hadoop 3. The master node is starting without an issue and Im able to register the workers on each worker node using the following comand: spark-class org.apache.spark.deploy.worker.Worker spark://<Master-IP>:7077 --host <Worker-IP>. When I register the worker , its able to connect and register ...Converting a dataframe to Panda data frame using toPandas() fails. Spark 3.0.0 Running in stand-alone mode using docker containers based on jupyter docker stack here: ... org.apache.spark.SparkException: Exception thrown in awaitResult Use the below points to fix this - Check the Spark version used in the project - especially if it involves a Cluster of nodes (Master , Slave). The Spark version which is running in the Slave nodes should be same as the Spark version dependency used in the Jar compilation. Spark and Java: Exception thrown in awaitResult Ask Question Asked 6 years, 10 months ago Modified 1 year, 2 months ago Viewed 64k times 16 I am trying to connect a Spark cluster running within a virtual machine with IP 10.20.30.50 and port 7077 from within a Java application and run the word count example:"org.apache.spark.SparkException: Exception thrown in awaitResult" failing intermittently a Spark mapping that accesses Hive tables ERROR: "java.lang.OutOfMemoryError: Java heap space" while running a mapping in Spark Execution mode using InformaticaHi! I am having the same problem here. Exception in thread "main" java.lang.reflect.UndeclaredThrowableException at org.apache.hadoop.security.UserGroupInformation ...An Azure analytics service that brings together data integration, enterprise data warehousing, and big data analytics. Previously known as Azure SQL Data Warehouse.Stack Overflow Public questions & answers; Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers; Talent Build your employer brandNov 15, 2021 · Solve : org.apache.spark.SparkException: Job aborted due to stage failure 0 Spark Session Problem: Exception: Java gateway process exited before sending its port number Aug 31, 2019 · Used Spark version Spark:2.2.0 (in Ambari) Used Spark Job Server version (Released version, git branch or docker image version) Spark-Job-Server:0.9 / 0.8 Deployed mode (client/cluster on Spark Sta... Sep 27, 2019 · 2. Caused by: org.apache.spark.SparkException: Exception thrown in awaitResult: The default spark.sql.broadcastTimeout is 300 Timeout in seconds for the broadcast wait time in broadcast joins. To overcome this problem increase the timeout time as per required example--conf "spark.sql.broadcastTimeout= 1200" 3. “org.apache.spark.rpc ... 1 Answer. Sorted by: 1. You need to create an RDD of type RDD [Tuple [str]] but in your code, the line: rdd = spark.sparkContext.parallelize (comments) returns RDD [str] which then fails when you try to convert it to dataframe with that given schema. Try modifying that line to:Broadcasting is when you send small data frames to all nodes in the cluster. This allows for the Spark engine to perform a join without reshuffling the data in the large stream. By default, the Spark engine will automatically decide whether or not to broadcast one side of a join.